High-Efficiency Asymmetric Forward-Flyback Converter for Wide Output Power Range

Introduction:
Flyback converter is an isolated step down dc/dc converter that is composed only of one switch, one transformer, and one diode. It has been used widely for an output power $p_0 \leq 100\,\text{w}$ because of the simplicity of circuit. However, the flyback converter has low power conversion efficiency η_e at a low p_0 because the switching frequency increases as p_0 decreases, and its switch is subjected to high-voltage stress because of the leakage inductance l_{lk1} from transformer.

Existing system:
The asymmetric half-bridge (AHB) converter has been used in the power supplies for plasma display panels and liquid crystal displays, which require $100 \leq PO \leq 500\,\text{W}$ and in adapters, battery chargers, and light emitting Diode lamp drivers, which require $PO \leq 100\,\text{W}$. The primary stage of the AHB is similar to that of the flyback converter and the secondary stage is the same as that of the half-bridge converter.

AHB remedies the deficiencies of the flyback converter by using a switch $S2$ at the primary stage to provide a free-wheeling path for the energy stored in the transformer leakage inductance L_{lk1}. The off-state voltage of switch $S2$ is clamped to the input voltage V_{IN}. AHB converter uses L_{lk1} to achieve a zero-voltage switching (ZVS) turn-on of $S1$ and
S_2 at a fixed switching frequency, so it has high ηe. However, $Llk1$ must be high to achieve ZVS for a wide range of PO, so the duty loss to provide a freewheeling path for the rectifier diodes $D1$ and $D2$ increases. An additional problem is that $D1$ and $D2$ suffer from a voltage ringing problem that is caused by a resonance between $Llk1$ and the parasitic capacitance of $D1$ and $D2$.

Dis-advantages:

- Its switch is subjected to high-voltage stress.
- Low power conversion efficiency

Proposed system:

A dc–dc converter that uses a blocking capacitor CB in the primary stage, instead of CC, and a voltage doubler structure with a forward inductor Lf is proposed. The proposed asymmetric forward-flyback dc–dc converter is a good candidate for developing a step-down dc–dc converter for applications that require high power-conversion efficiency over wide ranges of input voltage and output power.

The proposed converter increases the range of VIN by using unbalanced secondary turns of transformer, and can reduce the voltage stress of switches and the current stress of diodes.
The primary stage of the proposed converter is the same as that of the AHB converter. The two switches S_1 and S_2 operate at different duty ratios. The secondary stage is a voltage doubler circuit with a forward inductor L_f, which helps achieve ZVS turn-on of S_1 and S_2, and acts as an output filter. The problem of the duty loss, which is observed in the AHB converter, is minimized because no freewheeling current flows through D_1 and D_2; a resonance between L_f and C_1, and C_2 achieves ZCS turn-off of diodes. Also, C_1 and C_2 remove the voltage ringing in the rectifier diodes by clamping the reverse voltage of D_1 and D_2.

Advantages:
- All inductors and capacitors are loss free;
- C_b is large enough, so that the voltage ripple of c_b is negligible and c_b can be represented by a constant voltage source v_{cb}.
Applications:
- Power conversion applications.

Block diagram:

- DC source
- Asymmetric Forward Flyback Converter
- Load
- Gate driver circuit
- Buffer circuit
- PIC controller circuit
- 12VDC
- 5VDC

Copyright © 2017 LeMeniz Infotech. All rights reserved